Integration of Parametrized Integrands

Michael D. Vose
Edgar A. Duenez-Guzman
EECS Department
University of Tennessee

Lecture Outline

- Motivation
- Problem Statement
- Attempts using standard routines and packages
- Our approach
- Residue Integration
- Rational Approximation
- Parameters handles through function composition
- Theoretical Relative Error
- Further Speedup

Motivation

- Integration routines provided by scientific libraries and packages are widely used in computer simulations
- It is possible that such routines return answers coupled with a small error estimate that does not contain the real answer

- Here we present a case study and an alternative method employed to obtain reliable integration results

The Integral

- All integration problems in our simulation can be reduced to the following integral:

$$
I(\alpha, \beta, \gamma, \delta, \xi)=\int_{0}^{1} \int_{0}^{\infty} \frac{\exp \left(-\left(\frac{u-\alpha}{\beta}\right)^{2}-\left(\frac{v-\gamma}{\delta}\right)^{2}-\frac{v}{c_{0}-u c_{1}}-\xi\right)}{c_{0}-u c_{1}} d v d u
$$

- We used Maple to evaluate the integral when $\mathrm{c}_{0}=1$ and $\mathrm{c}_{1}=0.9$ using various precisions:

```
> Digits := 16; I_(0.9138181, 0.09564921, 0.5759114, 4.1584, 1.47815);
    0.00097...
> Digits := 32; I_(0.9138181, 0.09564921, 0.5759114, 4.1584, 1.47815);
    0.00687...
> Digits := 64; I_(0.9138181, 0.09564921, 0.5759114, 4.1584, 1.47815);
    0.02194...
> Digits := 128; I_(0.9138181, 0.09564921, 0.5759114, 4.1584, 1.47815);
    0.03221...
```


Other Attempts, Packages and Libraries

- Several other numerical integration routines were explored
- Mathematica and MatLab showed similar problems to Maple
- Both accuracy and speed are of crucial importance
- The GNU Scientific Library offers an API to calculate integrals
- The result reported was 0.00013 with an estimated relative error below 2.0e-8
- GSL takes about 0.0365 seconds to produce an answer
- The Numerical Algorithms Group library gave comparable results

Major drawback and alternative solution

- We hand-coded 128 and 256-point Gauss-Laguerre quadrature
- For some parameters, not even the 256-point quadrature could approximate the actual integral
- Over 160\% relative error
- Furthermore, significant additional speedup was desired
- Following is the description of our implementation to solve this problem

Integration by residues

- A well known integration technique involves contour integrals and Cauchy's residue Theorem
- Computing the integral is thus reduced to evaluating residues
- It requires, however, choosing contours to evaluate it
- Boas and Schoenfeld discussed in 1966 a variant of integration through residues of a function on the Riemann Sphere
- No contours are thus needed to evaluate integrals

Integration (Main Theorem)

- Three integral types are discussed in the article, the second one being the one used in this approach:

Theorem 1. Let F be holomorphic in the Riemann sphere except for a finite number of singularities. Let F be holomorphic on (u, v) except for simple poles and let F be holomorphic at u and v. Then

$$
\text { P.V. } \int_{u}^{v} F(t) d t=-(R+r)
$$

where R is the sum of the residues of $F(z) \log ((z-u) /(z-v))$ for z in the Riemann sphere but not in $[u, v]$, and r is the sum of residues of $F(z) \log ((z-u) /(v-z))$ for $z \in(u, v)$

Evaluating the Integral

- After further manipulations, the integral can be reduced to

$$
\int_{u}^{v} \exp \left(-\left(\frac{t-a}{b}\right)^{2}+\left(t^{-1}-d\right)^{2}\right)\left(1-\operatorname{erf}\left(t^{-1}-d\right)\right) \frac{d t}{t}
$$

- However, evaluating this integral by means of Theorem 1 requires computing the residue of the (essential) singularity at infinity and zero
- This is a difficult task!

The Residues at Infinity and Zero

- Let $F(z)$ be a complex function with, say, an essential singularity at zero with Laurent series

$$
F(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

- Observe that $\log ((z-u) /(v-z))$ is holomorphic around zero (assuming u and v are non-zero)
- It actually has non-zero coefficients for all terms in its series expansion

$$
\log \left(\frac{z-u}{v-z}\right)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

The Residues at Infinity and Zero

- Therefore, $F(z) \log ((z-u) /(v-z))$ will have a residue at zero given by the residue of:

$$
F(z) \log \left(\frac{z-u}{z-v}\right)=\left(\sum_{i=-\infty}^{\infty} a_{i} z^{i}\right)\left(\sum_{j=0}^{\infty} b_{j} z^{j}\right)
$$

- Note that the residue would be an infinite series expansion resulting from the product of the two expansions

$$
\sum_{k=0}^{\infty} a_{1-k} b_{k}
$$

- Analogously if the essential singularity is at infinity

Approximation of the Integrand

- Fortunately, essential singularities can be removed by approximating the integrand using meromorphic functions
- Meromorphic functions on the Riemann sphere are always rational functions
- Approximations can be done over several pieces to cover the whole integration interval
- There is a trade-off between number of poles/complexity of residues and the number of pieces that approximate the integrand
- Neither computing many rational approximations at compiletime nor computing them at run-time is feasible

Preparing the Integrand

- First, we split the integrand into three factors:

- Notice that the factors are chosen such that all the parameters are contained in a function that is composed with another function without parameters
- The parameterless functions $(\exp (-x)$ and $q(w))$ are the ones that will be approximated with rational functions

Exponential approximation

- The exponential function has an advantage when dealing with approximations of large intervals
- One approximation can be shifted to cover arbitrary parts of the real line

$$
\exp (-f(t))=\exp (s) \exp (-f(t)-s) \approx \exp (s) \text { rational }_{0}(f(t)+s)
$$

Approximation of $q(w)$

$$
q(w)=\exp \left(w^{2}\right)(1-\operatorname{erf}(w)), w=\frac{1}{t}-d
$$

- We can approximate $q(w)$ with only 4 rational functions:

$$
\begin{aligned}
& 2 \exp \left(w^{2}\right), w \in(-\infty,-3] \\
& \text { rational }_{1}(w), w \in[-3,0]
\end{aligned}
$$

$\operatorname{rational}_{2}(w), w \in[0,10]$
$\operatorname{rational}_{3}(w)=\frac{1}{\sqrt{\pi} w}-\frac{1}{2 \sqrt{\pi} w^{3}}, w \in[10, \infty)$

Calculating Rational Function Approximations

- rational is composed of the first two terms in the series expansion of $q(w)$ at infinity
- All other rational functions were computed with Maple's implementation of the Remez algorithm
- These approximations are holomorphic in $[u, v]$
- All numerators are of degree less than or equal to that of the its denominator, thus

$$
\frac{-1}{t^{2}} \operatorname{rational}_{k}\left(\frac{1}{t}\right) t \log \left(\frac{1-t u}{1-t v}\right)
$$

is holomorphic at $t=0$ and therefore the residue at infinity is zero

Preparation to Compute the Residues

- Except for rational ${ }_{3}$, all approximations have simple poles located off the real line and their partial fraction expansion consist of terms of the form

$$
\frac{\xi}{z-\zeta}
$$

- This is because in our case, the numerator have degree strictly of smaller degree than its denominator
- Following are two lemmas that would help us compute residues of complicated function from simpler ones

Product of Factors Lemma

Lemma 2. Let ψ have a simple pole at ζ with residue ξ. If ϕ is holomorphic at ζ, then the residue of $\psi(z) \phi(z)$ at $z=\zeta$ is $\xi \phi(\zeta)$

- This effectively allows us to compute the residue of a product of two functions by calculating the residue of one of them, and then multiplying by the value of the other function evaluated at the singularity

$$
\left(\frac{\xi}{z-\zeta}\right) \phi(z)
$$

Composition Lemma

Lemma 3. Let ζ be a point of the Riemann sphere where either $\phi^{\prime}(\zeta) \neq 0$ or else ϕ has a simple pole. Let $w=\phi(\zeta)$ and let ψ either be holomorphic at w or have an isolated singularity there. If φ is a local inverse of ϕ in a neighborhood of w, then the residue of $\psi(\phi(z))$ at $z=\zeta$ is equal to the residue of $\psi(z) \varphi^{\prime}(z)$ at z = w

- This effectively allows us to compute the residue of a composition of two functions by calculating the derivative of the inverse of the inner-most function. For example

$$
\begin{aligned}
& \phi(z)= \frac{1}{z}-d, \psi(t)=\frac{x}{t-y}, w=y, \zeta=\frac{1}{y+d}, \frac{1}{\phi^{\prime}(\zeta)}=-\zeta^{2} \\
& \text { residue of } \psi \text { at y } \\
& \quad \text { residue }(\psi(\phi(z)), z=\zeta)=x\left(-(y+d)^{-2}\right)
\end{aligned}
$$

Computing the Residues

- Four cases are explored:

$$
\text { rational }_{3}\left(t^{-1}-d\right) / t \frac{\xi}{((t-a) / b)^{2}+s-\zeta} \log \left(\frac{t-u^{\prime}}{t-v^{\prime}}\right)
$$

- At $t=1 / d$. A symbolical computation of the residue was obtained with Maple

$$
\operatorname{rational}_{k}\left(t^{-1}-d\right) / t \frac{\xi}{((t-a) / b)^{2}+s-\zeta} \log \left(\frac{t-u^{\prime}}{t-v^{\prime}}\right)
$$

- At $t=a \pm b \sqrt{\zeta-s}$. When k is either 1 or 2

$$
\text { rational }_{0}\left(((t-a) / b)^{2}+s\right) / t \frac{\xi}{t^{-1}-d-\zeta} \log \left(\frac{t-u^{\prime}}{t-v^{\prime}}\right)
$$

- At $t=1 /(d+\zeta)$. The last two cases are solved using Lemma 2 and 3

Theoretical Relative Error

- Let A be an approximation to the positive integrand F with relative error over [u, v]

$$
e=\|1-A / F\|_{\infty}
$$

- Then, the relative error between the integral of A and that of F is

$$
\left|1-\frac{\int A}{\int F}\right|=\left|\frac{\int F(1-A / F)}{\int F}\right| \leqslant \frac{\int F|1-A / F|}{\int F} \leqslant\|1-A / F\|_{\infty}=e
$$

- All our approximations have a relative error less than 0.1%.

Further Speedup

- To further speed up the computation, a version of lazy evaluation is implemented:
- It is possible to estimate the sub-intervals that will have the highest contribution to the integral. Those are evaluated first
- Computation stops when rest of sub-intervals are estimated to contribute less than 0.1% of the result computed so far
- Typical time to evaluate the original integration problem is 0.000048 seconds compared to 0.0365 seconds taken by the GNU Scientific library

Acknowledgments

-We thank Dr. Sergey Gavrilets for supporting this work through the NIH grant "New approaches to the modeling of speciation"(R01GM056693)

QUESTIONS?

